# Systemprogrammierung

#### Zwischenbilanz

### Wolfgang Schröder-Preikschat

Lehrstuhl Informatik 4

07. Oktober 2014

©wosch (Lehrstuhl Informatik 4)

Systemprogrammierung

SP2 # WS 2014/15

1 / 19

B | VIII Zwischenbilanz

1 Systemprogrammierung I (SP1)

# Gliederung

- Systemprogrammierung I (SP1)
  - Lehrveranstaltungskonzept
  - C
  - UNIX
  - Einleitung
  - Rechnerorganisation
  - Betriebssystemkonzepte
  - Betriebsarten
- 2 Systemprogrammierung II (SP2)
  - Ausblick

### Lernziele und Lehrinhalte

Grundlagen von Betriebssystemen

Vorgänge innerhalb von Rechensystemen ganzheitlich verstehen

 $\bullet \ \, \textbf{Zusammenspiel} \left\{ \begin{array}{ccc} \mathsf{Hardware} & \leftrightarrow & \mathsf{Software} \\ & \vdots & \\ \mathsf{Anwendung} & \leftrightarrow & \mathsf{Betriebssystem} \\ & \vdots & \\ \mathsf{Treiber} & \leftrightarrow & \mathsf{Ger\"{a}t} \end{array} \right\} \, \textbf{begreifen}$ 

## Grundzüge imperativer Systemprogrammierung (in C)

- im Kleinen praktizieren → Dienstprogramme
- im Großen erfahren → Betriebssysteme

©wosch (Lehrstuhl Informatik 4)

Systemprogrammierung

SP2 # WS 2014/15

3 / 19

B | VIII Zwischenbilanz

1 Systemprogrammierung I (SP1)

1.2 C

# Einführung in die Programmiersprache

### Schlüsselwörter

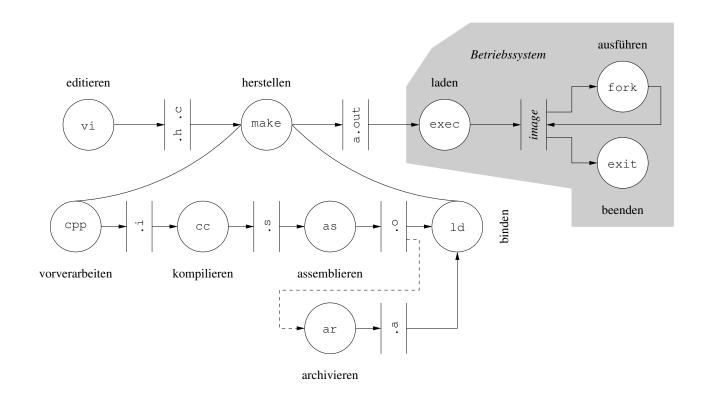
| auto   | break  | case     | char   | const    | continue | default  | do     |
|--------|--------|----------|--------|----------|----------|----------|--------|
| double | else   | enum     | extern | float    | for      | goto     | if     |
| int    | long   | register | return | short    | signed   | sizeof   | static |
| struct | switch | typedef  | union  | unsigned | void     | volatile | while  |

## Operatoren, Selektoren, Klammerungen und andere "Satzzeichen"

```
! " % & , ( ) * + , - . /
: ; < = > ? [ ] ^ { } ~
```

#### Frage: Was macht dieses C-Programm?

```
#include <stdio.h>
```


main(){char q=42,n=10,\*s="main(){char q=42,n=10,\*s=%c%s%c;printf(s,q,s,q,n);}%c";printf(s,q,s,q,n);}

#### Antwort: Es reproduziert sich selbst!

(http://www.zyvex.com/nanotech/selfRep.html)

wosch@fangorn 41\$ gcc magic.c
wosch@fangorn 42\$ ./a.out
main(){char q=42,n=10,\*s=\*main(){char q=42,n=10,\*s=%c%s%c;printf(s,q,s,q,n);}%c\*;printf(s,q,s,q,n);}
wosch@fangorn 43\$

# Vom Quellprogramm zum Prozess...



©wosch (Lehrstuhl Informatik 4)

Systemprogrammierung

SP2 # WS 2014/15 5 / 19

B | VIII Zwischenbilanz

1 Systemprogrammierung I (SP1)

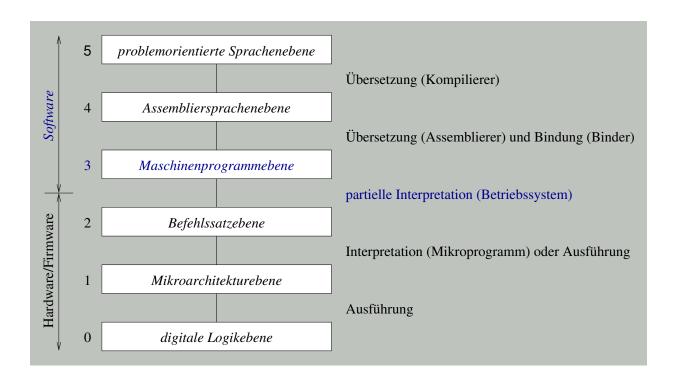
1.4 Einleitung

Notivation

Rückgrat eines jeden Rechensystems

Betriebssysteme sind unerlässliches Handwerkszeug der Informatik nicht alle müssen ein solches Handwerkszeug bauen/pflegen können alle müssen jedoch mit dem Begriff/Produkt umgehen können

Betriebssysteme zu verstehen hilft, Phänomene zu begreifen


- unterschiedliches Systemverhalten erklären zu können
- Eigenschaften und Fehler auseinanderhalten zu können

## Betriebssysteme immer im **Anwendungskontext** beurteilen:

• kein einzelnes System ist für alle möglichen Zwecke optimal geeignet

# Strukturierte Organisation von Rechensystemen

Betriebssystem: abstrakter Prozessor/virtuelle Maschine für Programme der Ebene 3



©wosch (Lehrstuhl Informatik 4) Systemprogrammierung SP2 # WS 2014/15

B | VIII Zwischenbilanz

1 Systemprogrammierung I (SP1)

1.5 Rechnerorganisation

# Unterbrechungen und Ausnahmesituationen

**Teilinterpretation** 

Programmunterbrechungen zeigen Ausnahmebedingungen an und bedeuten die **partielle Interpretation** von Maschinenprogrammen:

Trap synchron, vorhersagbar, reproduzierbar

Interrupt asynchron, unvorhersagbar, nicht reproduzierbar

- macht determinierte Programme nicht-deterministisch
- Nebenläufigkeit, kritischer Abschnitt

Ausnahmebehandlung bringt Kontextwechsel mit sich, die abrupte Zustandswechsel das ausführenden Prozessors bewirken:

- vom unterbrochenen Programm zum behandelnden Programm ↓BS
- vom behandelnden Programm zum unterbrochenen Programm BS ↑

Hardware und Software sind (funktional) äquivalent: Emulation

• die Nachahmung der Eigenschaften von Hardware durch Software

7 / 19

B | VIII Zwischenbilanz

#### Adressraum

Ausführungs- und Schutzdomäne von Programmen

physikalischer Adressraum (Hardware)......Ebene 2

- ist durch die jeweils gegebene Hardwarekonfiguration definiert
- nicht jede Adresse ist gültig, zur Programmspeicherung verwendbar

logischer Adressraum (Kompilierer, Binder, Betriebssystem)...Ebene 5/4/3

- abstrahiert von Aufbau/Struktur des Haupt- bzw. Arbeitsspeichers
- alle Adressen sind gültig und zur Programmspeicherung verwendbar

virtueller Adressraum (Betriebssystem)......Ebene 3

- auf Vorder- und Hintergrundspeicher abgebildeter log. Adressraum
- erlaubt die Ausführung unvollständig im RAM liegender Programme

| ©wosch (Lehrstuhl Informatik 4)                                         | Systemprogrammierung           | SP2 # WS 2014/15           | 9 / 19 |  |  |  |  |
|-------------------------------------------------------------------------|--------------------------------|----------------------------|--------|--|--|--|--|
|                                                                         |                                |                            |        |  |  |  |  |
| B   VIII Zwischenbilanz                                                 | 1 Systemprogrammierung I (SP1) | 1.6 Betriebssystemkonzepte |        |  |  |  |  |
| C                                                                       |                                |                            |        |  |  |  |  |
| Speicher                                                                |                                |                            |        |  |  |  |  |
| Zusammensniel aneinander angenasster Funktionen zu gegenseitigem Nutzen |                                |                            |        |  |  |  |  |

Laufzeitsystem (bzw. Bibliotheksebene) verwaltet den lokal vorrätigen Speicher eines logischen/virtuellen Adressraums

- Speicherblöcke können von sehr feinkörniger Struktur/Größe sein
  einzelne Bytes bzw. Verbundobjekte
- Verfahrensweisen orientieren sich (mehr) an Programmiersprachen

Betriebssystem verwaltet den global vorrätigen Speicher (d.h. den bestückten RAM-Bereich) des physikalischen Adressraums

- Speicherblöcke sind üblicherweise von grobkörniger Struktur/Größe
  z.B. eine Vielfaches von Seiten
- Verfahrensweisen fokussieren auf Benutzer- bzw. Systemkriterien

B | VIII Zwischenbilanz 1 Systemprogrammierung I (SP1) 1.6 Betriebssystemkonzepte

### Datei

Abstraktion von Informationen (über-) tragenden Betriebsmitteln

Aufbewahrungsmittel für zu speichernde Informationen

- kurz-, mittel-, langfristige Speicherung
- bleibende Speicherung (persistente Daten)

Kommunikationsmittel für kooperierende Prozesse

- gemeinsamer (externer) Speicher
- Weiterleitung von Informationen

Abstraktionsmittel für den Betriebsmittelzugang

- Hardware: CPU, RAM, Peripherie, ...
- Software: Adressräume, Prozesse, . . .

## Abbildung symbolische Adresse → numerische Adresse:

- einen Dateinamen auf auf eine Dateikopfnummer abbilden
- ein Dateiverzeichnis (auch) als Umsetzungstabelle verstehen

B | VIII Zwischenbilanz

1 Systemprogrammierung I (SP1)

1.6 Betriebssystemkonzepte

### Namensraum

Namen Kontexte zuordnen

Namensräumen eine Struktur aufprägen und dadurch einem Namen in "benutzerfreundlicher Weise" eine eindeutige Bedeutung geben können:

flache Struktur eines einzigen Kontextes

hierarchische Struktur mehrerer Kontexte (d.h. flacher Strukturen)

#### hierarchischer Namensraum

- Pfadnamen zur Navigation im Namensraum
- spezielle Kontexte (UNIX-artiger Systeme)
- Bindung und Auflösung von Namen

#### Hierarchie von Namensräumen

• Montieren von Dateisystemen

## Dateisysteme und Namensräume sind (logisch) verschiedene Dinge:

- das eine organisiert den Hintergrundspeicher (zur Dateiablage)
- das andere dient der Identifikation von Objekten (nicht nur Dateien)

B | VIII Zwischenbilanz

#### **Prozess**

Abstraktes Gebilde vs. Identität einer Programmausführung

Gewichtsklasse eine Frage der Isolation von Adressräumen

Federgewicht keine Isolation

• der "reine" Kontrollfluss: Faden

Leichtgewicht vertikale Isolation

vom Betriebssystemadressraum

Schwergewicht horizontale Isolation

von allg. Programmadressräumen

Einplanung Reihenfolgen festlegen, Aufträge sortieren

- Ablaufplan zur Betriebsmittelzuteilung erstellen
- Ablaufzustände von Prozessen fortschreiben
- charakteristische Eigenschaften der Einplanung/Einlastung von UNIX

©wosch (Lehrstuhl Informatik 4)

Systemprogrammierung

SP2 # WS 2014/15

13 / 19

B | VIII Zwischenbilanz

1 Systemprogrammierung I (SP1)

1.6 Betriebssystemkonzepte

### Koordinationsmittel

Sequentialisierung nicht-sequentieller Programme

Semaphor abstrakter Datentyp zur Signalisierung von Ereignissen

- unteilbare Operationen auf eine Koordinationsvariable
  - P und V manipulieren eine nicht-negative ganze Zahl
- zur blockierenden Synchronisation gleichzeitiger Prozesse

Botschaft Synchronisation kombiniert mit Datentransfer

- Primitiven (Semantiken) zum Botschaftenaustausch
  - {no-wait, synchronization, remote-invocation} send
- Rollenspiele bei der Interprozesskommunikation
  - gleich- vs. ungleichberechtigte Kommunikation
- Kommunikationsendpunktadressen und Verbindungen

Betriebsmittel vs. synchrone/asynchrone bzw. blockierende IPC:

konsumierbares Betriebsmittel Nachricht (bzw. Botschaft) wiederverwendbares Betriebsmittel Nachrichtenpuffer

B | VIII Zwischenbilanz

## Stapelbetrieb

Stapelsysteme

abgesetzter Betrieb Satellitenrechner, Hauptrechner

Entlastung durch Spezialrechner

überlappte Ein-/Ausgabe DMA, Interrupts

nebenläufige Programmausführung

überlappte Auftragsverarbeitung Einplanung, Vorgriff

Verarbeitungsstrom von Aufträgen

abgesetzte Ein-/Ausgabe Spooling

• Entkopplung durch Pufferbereiche

Mehrprogrammbetrieb Multiprogramming

Multiplexen der CPU

• programmiertes dynamisches Laden von Überlagerungen (Overlays)

©wosch (Lehrstuhl Informatik 4)

Systemprogrammierung

SP2 # WS 2014/15

15 / 19

B | VIII Zwischenbilanz

1 Systemprogrammierung I (SP1)

1.7 Betriebsarten

# Mehrzugangsbetrieb

Interaktive Systeme

Dialogbetrieb Dialogstationen

• mehrere Benutzer gleichzeitig bedienen können

Hintergrundbetrieb Mischbetrieb

• Programme im Vordergrund starten

Teilnehmerbetrieb Zeitscheibe, Timesharing

• eigene Dialogprozesse absetzen können

Teilhaberbetrieb residente Dialogprozesse

• sich gemeinsame Dialogprozesse teilen können

Multiprozessorbetrieb Parallelrechner, SMP

Parallelverarbeitung von Programmen

• Umlagerung (Swapping) kompletter Programme, virtueller Speicher

### **Echtzeitbetrieb**

Zeitabhängige Systeme

- die im Rechensystem verwendete Zeitskala muss mit der durch die Umgebung vorgegebenen identisch sein
- Zeit ist keine intrinsische Eigenschaft des Rechensystems

| weich auch "schwach"soft                                                       |
|--------------------------------------------------------------------------------|
| <ul> <li>Terminverletzung ist tolerierbar</li> </ul>                           |
| fest auch "stark" firm                                                         |
| <ul> <li>Terminverletzung ist tolerierbar, führt zum Arbeitsabbruch</li> </ul> |
| hart auch "strikt"                                                             |
| <ul> <li>Terminverletzung ist keinesfalls tolerierbar, Ausnahmefall</li> </ul> |
| ullet querschneidender Belang der gesamten Systemsoftware $+$ Anwendung        |
|                                                                                |

©wosch (Lehrstuhl Informatik 4)

Systemprogrammierung

SP2 # WS 2014/15

17 / 19

B | VIII Zwischenbilanz

2 Systemprogrammierung II (SP2)

# Gliederung

- Systemprogrammierung I (SP1)
  - Lehrveranstaltungskonzept
  - (
  - UNIX
  - Einleitung
  - Rechnerorganisation
  - Betriebssystemkonzepte
  - Betriebsarten
- 2 Systemprogrammierung II (SP2)
  - Ausblick

## Vertiefung

Ausgewählte Kapitel der Systemprogrammierung

Prozessverwaltung

- Einplanung (klassisch, Fallstudien)
- Koroutinen, Programmfäden, Einlastung

Koordination

- ein-/mehrseitig, blockierend/nicht-blockierend
- Verklemmungen (Gegenmaßnahmen, Auflösung)

Speicherverwaltung

- Adressräume, MMU (Pentium)
- Disziplinen, virtueller Speicher, Arbeitsmenge

Dateiverwaltung

- Organisation des Hintergrundspeichers
- Datenverfügbarkeit (RAID)

Was noch wichtig ist – aber den Rahmen von SP2 sprengen würde. . .

Sicherheit

- Zugriffsmatrix, Befähigung, Zugriffskontrollliste
- Bell/LaPadula

Architektur

- Monolith, geschichtetes System, Minimalkerne
- Selbst-/Paravirtualisierung

©wosch (Lehrstuhl Informatik 4)

Systemprogrammierung

SP2 # WS 2014/15

19 / 19